天才AI

AGI时代

发布时间:2024年12月06日 来源:人人都是产品经理 作者:人人都是产品经理 浏览量:136

1.1 AI(Artificial Intelligence)简史

最初在1955年,由约翰·麦卡锡(John McCarthy)创造的术语【人工智能】(Artificial Intelligence)指的是能够像人类一样思考、学习和推理的机器或计算机程序 – 其能够具备人类的普遍智慧,即能够学习各领域知识,并能将知识输出在各个领域。

当时,约翰·麦卡锡预计人工智能将在几个月内实现。

约翰·麦卡锡在实践过程中,遇到了极大的技术阻碍,因此多年来,【人工智能】领域演变为【狭义人工智能】,即:一次只解决一种类型的问题。

我们将AI的能力应用在了各个领域,比如:机器视觉(CV)、语音识别(ASR)、自然语言处理(NLP)。但将AI能力应用到各种场景细分的不利后果是:我们现在依然需要程序员或者数据分析师才能实现场景下特定的目标,而不是我们构建了类似智能人脑的系统。

因此,【人工智能】的重点从系统内在智能,转移到利用外部环境中的智能,需要程序员的智慧,解决特定问题。

随着业务的深入,也更加关注特定场景下的人工智能的使用,这样导致了:【人工智能】在迭代的过程中,忽视了适应型主动性这两大核心。智能体的初步设计是能够自主地适应不断变化的环境,根据环境调整自身算法,进行主动知识学习和研判,从而完成预设目标,但现在完成目标的不是【人工智能】,而是场景中的相关技术/业务人员。

1.2 AGI的背景

【AGI】的词汇是“Artificial General Intelligence”的缩写。

1997年时,【AGI】这个术语被定义,我们称之为——【通用人工智能】。由Mark Gubrud《Nanotechnology and International Security》(纳米技术与国际安全)中提出,其主要内容是:讨论全自动化军事生产和作战的影响。

原文如下:

翻译为:

通过先进的【人工通用智能】——在复杂性和速度上能与人类大脑相媲美甚至超越的系统

这些系统可以获取、操纵和推理日常的知识,在需要人类智力的领域发挥作用,比如:在工业或军事行动的任何阶段。

这样的系统可能以人类大脑为模型,但并不一定必须如此,重要的是这样的系统可以被用来取代人类大脑,从组织和管理矿山或工厂到驾驶飞机、分析情报数据或规划战斗等各种任务。

Mark Gubrud认为【AGI】可以取代人类的大脑,做方方面面的领域应用,如:组织和管理工厂、驾驶飞机、分析情报等战斗任务。虽然当时Mark Gubrud没有提出一条确定的概念来描述【AGI】,但是我们可以从几个关键词来感知【AGI】的雏形:代替人类大脑、做各方面应用

2001年,许多人工智能研究人员独立得出结论,认为现在是回归【人工智能】原始愿景的时候,并决定联合撰写关于【人工智能】主题的书。2002年,其中三位作者分别为:本·戈尔策尔(Ben Goertzel)、谢恩·莱格(Shane Legg)和彼得·沃斯(Peter Voss)为该书的标题创造了术语【通用人工智能】(Artificial General Intelligence)。

1.3 AGI的定义

AGI(Artificial General Intelligence)的概念指的是创建(半)自治、适应性强的计算机系统,具有典型的人类一般认知能力,具备支持抽象、类比、规划和问题解决的能力。(来源于:《Why We Don’t Have AGI Yet》: AGI refers to creating (semi-)autonomous, adaptive computer systems with the general cognitive capabilities typical for humans. The ability to support abstraction, analogy, planning and problem-solving. )

2 AGI的现状

下面以两个具体的场景为例,带入读者感受现阶段【AI】概念与【AGI】概念的不同。

2.1 狭义人工智能/弱人工智能

弱人工智能(英语:Weak artificial intelligence,简称Weak AI)或称狭义人工智能(Narrow AI)、应用型人工智能(Applied AI),是实现部分知识应用的人工智能,且仅能专注于某项特定任务。用约翰·瑟尔的话来说,它“对于测试关于思想的假设很有用,但实际上并非思想本身”。弱人工智能专注于模仿人类如何执行基本动作,例如记忆或感知事物、解决简单问题。比如:AlphaGo是一种围棋软件,只能专注于下围棋。

1990年代和21世纪初,【狭义人工智能】在商业成果和学术地位上,已经达到了一个新高度,依靠专注于解决细分的问题。他们可以提供许多方案和商业应用,例如:人工神经网络、机器视觉以及数据挖掘。这些【狭义人工智能】今天已经在工业技术和科学研究中,得到广泛和深入的应用,在学术和产业方面都得到了许多资助。

2.2 狭义人工智能的使用场景

有一位名叫李明的企业家,他正在寻找一种创新的市场营销策略来推广他的产品。考虑到社交媒体在当下的重要性,他决定尝试利用【NLP-自然语言模型】助力社交媒体营销。

李明提供了一些关于他的产品特点和目标受众信息,请求【NLP-自然语言模型】生成一系列具有吸引力和影响力的社交媒体内容。【NLP-自然语言模型】开始分析这些信息,并生成了一系列引人注目的媒体帖子、广告标语和产品描述。

李明根据【NLP-自然语言模型】生成的内容,制作了一系列的社交媒体内容,并发布到多个平台上。这些内容不仅引起了用户的兴趣,还增加了产品的知名度和销售量,为企业带来了可观的营销效果。

这个案例讲述了,通过【NLP-自然语言模型】的协助,李明成功地实现了创新的社交媒体营销策略,为他的产品带来了广泛的关注和认可。这个例子突出了【NLP-自然语言模型】在企业营销中的应用潜力,为企业提供了创造性的市场推广方案,帮助他们实现品牌宣传和市场竞争优势。

但是这也会有一定的不足,如果李明想让AI帮助生成一整套商业推广策略,【NLP-自然语言模型】可能就有些力不从心了,因为整套的商业推广文件形式,涉及到视频、图片等。如果生成推广海报,可能需要【CV-视觉模型】和其他领域人工智能的介入。

通过这个案例,我们可以把这种【NLP-自然语言模型】、【CV-视觉模型】等,归类为【狭义人工智能】。这些【狭义人工智能】都有一个共性,其只是在某一领域给需求方提供一定的指导,其智能程度无法帮助需求方完成一整套需求落地,主要表现为:最终把生成的社交媒体内容推向市场的还是李明、而不是【NLP-自然语言模型】

我们试想,如果上述案例让【AGI】执行,将会是怎样呢?

AGI】得知李明需要推广产品后,开始查阅所有的方案推广可能性,根据现在市场行情,从中选择一个最优解;然后,【AGI】开始撰写符合商业场景的文案,并自动合成相关的宣传视频、生成推广海报;在这些物料准备完成后,

AGI】开始分析广告投放策略,并通过不同渠道做精准的广告投放,把边际成本降到最低;在广告投放完成后,【AGI】会对市场反馈的数据再进行分析,优化现有物料、提升渠道效率,降低获客成本。最终结果当达到你的目标时,【AGI】给予你反馈。

而在【AGI】执行此任务的过程中,自身又根据事件及环境作出了自我优化。在面临相似需求时候,它会更加智能、更加高效。

2.3 现代通用人工智能(AGI)的使用场景

AGI】的使用远不止上述案例,为什么说【AGI】只存在于小说里、科幻电影中呢?因为【AGI】具象化以后,就是一个无所不能的、集各领域行业专家知识于一身的智能体。下面再举一个案例请大家感受一下【AGI】的智能程度。

想象一下,现在有一个关于《治愈癌症》的课题急需攻破,其影响重大,可能挽救成千上万病患者的生命,但以现有的研发资源来看,这还是一个无法解决的问题,具体体现在:缺乏富有经验的医学人才,缺少对以往医疗案例有效数据进行深入挖掘。

AGI】可以通过全面整合已有的医学文献、临床案例和研究报告,挖掘其中的关键信息和潜在规律。

AGI】能够快速理解并分析大量医学数据,寻找可能的突破点和治疗方向。同时,【AGI】可以利用计算机模拟技术,对潜在的治疗方法和新药进行大规模虚拟实验,加速研发过程。通过分子模拟、蛋白质配体对接等技术,筛选出可能的有效药物及其作用机制。

在临床实践中,【AGI】可以提供最新的研究成果和治疗建议,帮助医生做出更明智的医疗决策。同时,在医生实际决策的数据中,【AGI】又会进行深度学习。

在很短的时间之内,【AGI】会变成一个行业的解决方案专家,当然了,不同的医院有不同的高级智能体,这些智能体之间会相互共享、分析数据,将各类深度学习的人工智能知识汇聚,做自我升级。

不久,【AGI】就会超越人类,率先研发出对抗癌症的解决方案。

虽然有了一系列的展望,但是AGI的伦理层面还是需要深度探索,国内外人工智能发展的现状总是技术跑在监管条例前面,因此,会引发一系列的社会问题,在对人工智能发展的监管力度应该加强。

免责声明:本文来自人人都是产品经理客户端,不代表超天才网的观点和立场。文章及图片来源网络,版权归作者所有,如有投诉请联系删除。

2 0 0

游客 游客

这位投稿者太神秘了,什么都没留下~

热门文章

联系我们| 加入我们| 法律声明| 关于我们| 评论互动

超天才网©2013-2014 All Rights Reserved 京ICP备09005826号-2 京ICP证130304号

京公网安备 11010802036640号

关注我们: